CMEs: Fermi Paradox solution?

One of the theoretical solutions to Fermi’s Paradox is the Rare Earth theory.

Fermi’s Paradox, if you’re unfamiliar, is the quandary that asks if intelligent life is probable in the galaxy and/or universe — why have we not seen evidence of it? (Aside from our own?)

There are so called “solutions” to this question and you can research them if you care to, but the one that I find most compelling is the one that supposes “Earth is rare.” Isaac Arthur’s Youtube channel has a Fermi’s Paradox compendium video which explains, in detail, this and the other solutions (Video).

There is one aspect of this Rare Earth solution that seems to go unexamined. And it is this: That Coronal Mass Ejections, CMEs, will have a severe and recurring negative affect on any technologically advanced society.

Humanity has experienced just one CME of a size to do it serious damage. You may or may not be familiar with the 1859 Carrington Event and the government reports on the next CME that will hit us (as well as the July 2012 CME that barely missed us), but you should.

CMEs have the potential, some think slight, but I think enormous, to disrupt electricity generation and transmission. I believe few people, if anybody, have theorized the extent to which a CME (every few hundred years — or more frequently) will have on an advanced technological society…

Or what it will have on OUR advanced technological society. Our electricity dependent civilization has never experienced a CME of Carrington level.

The solution to Fermi’s Paradox would hold that CMEs slamming electricity enabled civilizations anywhere in the galaxy or universe, over and over, each time knocking them back hundreds of years of their progress, wasting resources (like irreplaceable fossil fuels) will, in the end, suppress such civilizations from becoming electro-magnetically communicating / space-faring species.

Periodic coronal mass ejections would continually reset alien intelligence species’ societal progress. After every CME that wipes out their electricity generation and transmission capability their society will collapse. Over and over. CME’s happen again and again, in cycles.

The next massive Carrington level CME to strike Earth is going to, potentially, collapse our technological society. If a pair of massive CMEs were to hit during our summer, 10 to 16 hours apart — say goodbye to civilization in the Northern Hemisphere.

Here’s a theoretical scenario that explores this possibility:
Blue Across the Sea – Epilogue

Most experts who analyze the impact of CMEs, I think, underestimate the destructive force they pose. I believe that, specifically, the millions of miles of wire strung in every city and state, in every business building and home, in every subway, train station, in every airliner, in every container ship, in every facet of society — WILL be affected. WILL react to the magnetic plasma attack that a CME represents. And that this reality, here-to-for unexamined and unrealized, will collapse human society.

When it happens to us then it could happen to any galactic intelligent species. This, in my opinion, represents a valid solution to the Fermi Paradox.

Advertisements

One response to “CMEs: Fermi Paradox solution?

  • Anony Mole

    “Excitement is building over European plans to launch a new space-weather satellite that would drastically improve forecasts of how solar storms will affect Earth.

    The European Space Agency (ESA) hopes to send the probe to a gravitationally stable point in space known as Lagrange point 5 (L5) by around 2023, where it would provide a unique, side-on view of streams of charged particles heading towards Earth. The strongest of such eruptions, known as coronal mass ejections (CMEs), can knock out navigation and communications satellites, interfere with aeroplane navigation systems and disrupt power grids.

    Currently, probes can only look at incoming space weather head-on. The side-on view would allow scientists to measure the speed of the bursts with greater accuracy. And by observing the Sun’s surface as it rotates towards Earth, the probe would give a preview of sunspots, some of which produce CMEs, before they directly face Earth (see ‘Parking space-weather probes’).

    “An L5 mission would give something the others don’t have,” says Hermann Opgenoorth, a space-plasma physicist at the Swedish Institute of Space Physics in Uppsala. “We’re excited that it’s finally going ahead.”

    European ministers agreed to fund the first design phase of the €450-million (US$478-million) mission with between €20 million and €30 million at a meeting in Lucerne, Switzerland, last month. The space-weather mission would be ESA’s first aimed at forecasting, rather than pure science. ESA officials will ask for the rest of the funding at the next ministerial meeting in 2019.

    Technically, ESA has yet to decide whether the satellite will go to L5 or to another gravitationally stable point, known as L1, between Earth and the Sun. Andreas Ottenbacher at the European Space Operations Centre in Darmstadt, Germany, who is a member of ESA’s Space Situational Awareness Programme, says that sending a new mission to L1 is essential, but the United States looks likely to do that in the early 2020s, leaving Europe free to explore the L5 mission.

    L1 is well populated with probes, but some are ageing, such as the 20-year-old joint ESA–NASA Solar and Heliospheric Observatory (SOHO). And others, such as the US Deep Space Climate Observatory (DSCOVR), lack a coronagraph — an instrument needed to detect the onset of a CME, the most dangerous form of space weather.

    Data from NASA’s twin STEREO satellites, one of which passed through L5 during its orbit of the Sun between 2008 and 2010, suggest that a permanent craft there should cut the uncertainty in CME impact time from 10 hours to less than 6 hours, says Mike Hapgood, a space-weather physicist at the Rutherford Appleton Laboratory in Didcot, UK, who chairs the UK Space Environment Impact Experts group. The profile view would also allow scientists to see whether separate CMEs interact to build up into a much greater shockwave.

    Moreover, the L5 point would give a preview of the surface of the rotating Sun soon to be facing Earth — with benefits for forecasting and solar physics. Currently, forecasts from L1 can raise the alarm only once a ball of plasma has gone hurtling into space. With plasma speeds as high as 3,000 kilometres per second, this means just 15–17 hours’ warning — well short of the 2–3 days that power-grid operators say they need to prepare for disruption, says Juha-Pekka Luntama, who heads ESA’s space-weather team at the European Space Operations Centre.

    From its shifted position around Earth’s orbit, an L5 craft would see the Sun’s rotating surface four to five days before one at L1 would. Although scientists can’t yet predict with great certainty when sunspots will erupt, just seeing the approach of active zones could allow them to raise an early warning that a dangerous space-weather event is more likely, says Luntama.

    “It’s a little like a tornado warning in the US — you can’t tell exactly when it’s going to happen or where, but you can give a warning that there’s an increased probability of dangerous conditions,” Luntamasays. Combined with L1 data, an L5 craft would allow scientists to track sunspots for longer, which should help them to eventually work out what makes the features erupt and when, adds Opgenoorth.

    An extreme space-weather event has not hit Earth since 1859, when a CME caused telegraph equipment to catch fire. There was a comparable event in 2012, but it happened on the opposite side of the Sun so did not affect Earth. The impact of an equivalent event, given today’s infrastructure, would be enormous, adds Luntama.

    “We have been lucky that we have not been hit by a really big event,” he says. “We will be hit eventually, the question is, ‘when?’””

    http://www.nature.com/news/space-weather-forecast-to-improve-with-european-satellite-1.21305

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: